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ABSTRACT The b/a transition of b-lactoglobulin, a globular protein abundant in the milk of several mammals, is inves-
tigated in this work. This transition, induced by the cationic surfactant dodecyltrimethylammonium chloride (DTAC), is accom-
panied by partial unfolding of the protein. In this work, unfolding of bovine b-lactoglobulin in DTAC is compared with its unfolding
induced by the chemical denaturant guanidine hydrochloride (GnHCl). The final protein states attained in the two media have
quite different secondary structure: in DTAC the a-helical content increases, leading to the so-called a-state; in GnHCl the
amount of ordered secondary-structure decreases, resulting in a random coil-rich final state (denatured, or D, state). To obtain
information on both mechanistic routes, in DTAC and GnHCl, and to characterize intermediates, the kinetics of unfolding were
investigated in the two media. Equilibrium and kinetic data show the partial accumulation of an on-pathway intermediate in each
unfolding route: in DTAC, an intermediate (I1) with mostly native secondary structure but loose tertiary structure appears
between the native (b) and a-states; in GnHCl, another intermediate (I2) appears between states b and D. Kinetic rate constants
follow a linear Chevron-plot representation in GnHCl, but show a more complex mechanism in DTAC, which acts like a stronger
binding species.

INTRODUCTION

Conformational transitions of labile proteins (which easily

undergo radical changes in their secondary/tertiary struc-

tures) occasionally lead to misfolding and consequent self-

association or accumulation in cells, causing the so-called

‘‘conformational diseases’’ (1). An example is the prion

protein (PrP), which can trigger infectious neurodegenera-

tive diseases such as the human Creutzfeldt-Jakob’s disease

and the bovine spongioform encephalopathy (1,2). These

disorders originate in a conformational transition of PrP in

which part of the a-helices change into b-sheets (2). The

study of this a-helix to b-sheet transition (a/b), in several

proteins, has thus become an important topic of research to

better understand the in vivo folding and misfolding and the

physiological function of these proteins (3).

An a/b transition also occurs in the in vivo folding

process of b-lactoglobulin (4–6), a protein abundant in the

milk of several mammals. Bovine b-lactoglobulin has thus

been frequently chosen as a model protein to clarify the

mechanism of the a/b (or b/a) transition(s).

The globular conformation of the native state of b-lacto-

globulin (BLG) (see Fig. 10 below) results mainly from a

central b-barrel, formed by eight antiparallel b-strands

(bA�bH) shaped into a flattened cone, or calyx (7); outside

the calyx lie one further b-strand (bI), one a-helix, and four

short 310-helices (3).

The quaternary structure of BLG in water above pH � 3

(but depending on the protein concentration, ionic strength,

and temperature) is a dimer (8), where the monomer units,

bound noncovalently through their bI-strands, retain their

native secondary and tertiary structures (7). Below pH � 3,

BLG is generally monomeric (8).

BLG is a labile protein in what refers to its secondary

structure because, even though being mainly a b-sheet protein

when native, a significant number of its residues have a

marked a-helical propensity (4,5). The so-called ‘‘a-state’’ of

BLG (containing a large amount of a-helices) was confirmed

to be induced by 2,2,2-trifluoroethanol, by NMR measure-

ments (3). The interaction with some other alcohols and

organic solvents also increases the protein a-helical content

(see, e.g., the literature (9–14)). Furthermore, this behavior

was observed in the presence of phospholipid bilayers (15)

and synthetic mixed micelles and vesicles used as models of

cell membranes (16). These latter studies (15,16) aimed at a

deeper understanding on the interaction of BLG with

biological membranes.

In previous work (16), we investigated secondary- and

tertiary-structure changes of BLG, in equilibrium condi-

tions. The a-helix and b-sheet contents of the protein were

estimated by far-UV CD spectroscopy; whereas changes in

tertiary structure were investigated by near-UV CD and steady-

state fluorescence techniques, sensing the environment of the

tryptophans (Trp-19 and Trp-61). It was found that both mixed

micelles and vesicles, formed spontaneously in the bicationic
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Complexo I, Instituto Superior Técnico, Technical University of Lisbon,

Avenida Rovisco Pais, 1049-001 Lisbon, Portugal. Tel.: 00-351-21-8419389;

Fax: 00-351-21-8464455; E-mail: iviseu@mail.ist.utl.pt.

Abbreviations used: BLG, b-lactoglobulin; DTAC, dodecyltrimethylam-

monium chloride; GnHCl, guanidine hydrochloride; Trp, tryptophan; CMC,

critical micelle concentration; CD, circular dichroism; UV, ultraviolet.

Editor: Heinrich Roder.

� 2007 by the Biophysical Society

0006-3495/07/11/3601/12 $2.00

Biophysical Journal Volume 93 November 2007 3601–3612 3601



surfactant system DDAB-DTAC (didodecyldimethylammo-

nium bromide–dodecyltrimethylammonium chloride; (17,18)),

induce a b/a transition in BLG and stabilize the nonnative,

partially unfolded, a-state of the protein (16).

In pure DTAC media, higher surfactant concentrations

were needed to induce the b/a transition of BLG than those

needed to (partially) unfold the protein. This noncoincidence

on the evolution of secondary- and tertiary-structure changes

suggests the accumulation of an intermediate (I1) between

states b and a of BLG. However, the nature of state I1 could

not be found from equilibrium data alone (16).

The purpose of this work is to complement previous

equilibrium studies of the b/a transition of BLG, induced

by DTAC, with a detailed kinetic investigation of the cor-

responding unfolding route. The transition, initiated by means

of a stopped-flow device, was followed through the fluores-

cence of the two BLG tryptophans.

Previous spectroscopic characterization of BLG (16) showed

that the nature of the a-state is quite different from that of the

completely unfolded state (D) induced by the chemical

denaturant guanidine hydrochloride (GnHCl). Therefore, in

this work, we also investigate the kinetics of the two BLG

unfolding routes: route A, induced by the surfactant DTAC,

leading to the a-state; and route B, induced by the denaturant

GnHCl, producing the D-state.

A detailed characterization of the equilibrium and kinetic

intermediates of BLG will be of interest to understand the role

of local and nonlocal interactions along the protein unfolding

route(s). Analysis of equilibrium data of BLG in DTAC was

addressed in our previous article (16). Therefore, we only

present herein a short description of the main equilibrium

results in DTAC, and compare them with those in GnHCl. On

the other hand, unfolding kinetics of BLG are described with

some detail in the two media. In this work, we obtain

information not only on the rates of the unfolding phases but

also on the fluorescence properties of all states (initial,

intermediate, and final), as a function of the concentration of

the ‘‘unfolding agents’’, DTAC and GnHCl. Finally, we com-

pare the mechanistic pathways leading to the different protein

states a and D.

MATERIALS AND METHODS

Materials

The protein BLG, a mixture of the bovine variants A and B, was purchased

from Sigma (St. Louis, MO) with �90% purity, as determined by poly-

acrylamide gel electrophoresis. The surfactant DTAC was purchased from

TCI (Tokyo Kasei, Japan) as an ion-pair chromatographic reagent, with

purity $98%, and the denaturant GnHCl was obtained from Gibco Life

Sciences (Gaithersburg, MD) or from Invitrogen (puritiy $99%). Buffers

were prepared with Na2HPO4 ($97% pure) and NaH2PO4 ($98% pure)

from BDH, to obtain a final pH of 7; or with HCl (37% solution, from

Merck, Rahway, NJ) and KCl ($99.5% pure, from Fluka, Milwaukee, WI)

to obtain a final pH of 2. All compounds were used as purchased, without

further purification. Freshly bidistilled (Millipore, Billerica, MA) water was

used in all samples.

Sample preparation

b-Lactoglobulin solutions

Concentrated aqueous solutions of BLG (with approximately twice the final

concentration) were stored in the refrigerator, and used within two days to

prepare the final samples in water.

DTAC solutions

DTAC samples were prepared from a stock aqueous solution above the

critical micelle concentration, stored at room temperature. The measured pH

in the final samples (6.0�6.5) was above the BLG isoelectric point, pI� 5.2.

GnHCl solutions

Equilibrium experiments were performed in 0.1 M phosphate buffer, pH ¼
7, from stock solutions (�8 M in GnHCl) kept at room temperature. For

kinetic experiments, GnHCl stock solutions (�8 M) were prepared without

buffers and stored in the refrigerator; the final (diluted) GnHCl solutions

(with a measured pH � 5.0�6.0) were stored in the refrigerator.

Spectral and kinetic measurements

UV-visible absorption

Absorption spectra of BLG were obtained in the near-UV (240�340 nm) on

a Jasco V-560 UV-visible absorption spectrometer, using a quartz cell with

an optical path of 1 cm. These spectra were used to calibrate the protein

concentration, using a molar extinction coefficient e¼ 17,600 M�1 cm�1 for

the monomeric BLG in water at 280 nm (19).

Circular dichroism spectra

CD spectra of BLG were obtained on a Jasco J-720 spectropolarimeter. The

secondary structure was followed in the far-UV (190�260 nm for DTAC

solutions, and 215�260 nm for GnHCl solutions), using a protein concen-

tration of �10 mM (in monomer) and an optical path of 2 mm. The tertiary

structure was observed in the near-UV (250�330 nm) with a BLG

monomeric concentration of 40�100 mM and an optical path of 1 cm. A

mean of five spectra was averaged for each solution. Baseline correction was

performed by subtracting the corresponding solvent spectrum from each

sample spectrum. The results were expressed as molar ellipticity per

monomer unit of the protein, [u].

In the case of DTAC solutions, the fraction of each main secondary-

structure element (a-helix, b-sheet, b-turn, random coil, etc.) was evaluated

by deconvolution of the far-UV CD spectra, using the self-consistent

algorithm SELCON3 (20,21) from the program package ‘‘Dicroprot 2000’’

downloaded from the internet (22). However, because of the limited far-UV

spectral range used in the case of GnHCl solutions, only an estimation of the

fraction of a-helical secondary structure could be obtained from the

ellipticity at 222 nm, [u]222.

Steady-state fluorescence

Fluorescence spectra of BLG for the main equilibrium studies were obtained

on a Perkin-Elmer LS-50B luminescence spectrometer; later on, a Spex

Fluorolog Tau-3-11 luminescence spectrometer, from Horiba Jobin-Yvon

(configured for steady-state conditions), was used for most of equilibrium

and all kinetic runs. The BLG tryptophans were excited selectively at 293 6

2 nm, and the emission was collected from 300 to 450 nm. To obtain rela-

tive emission intensities in a set of experiments, all operating conditions

(excitation and emission slits, etc.) were kept constant.
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The signal/noise ratio of the Fluorolog, as determined by the Raman peak

of water (23), was usually �500�900.

Stopped-flow/fluorescence

Unfolding kinetic runs were initiated by a stopped-flow mixer, the RX2000

from Applied Photophysics (Leatherhead, UK). The drive syringes (per-

mitting a 1:1 mixing ratio), the connecting tubes, and the stopped-flow cell

were maintained at a controlled temperature of 25.0 6 0.1�C in all essays.

The observation silica cell (with an excitation optical path of 1 cm) was

placed in a standard cell holder of the Spex luminescence spectrometer

described above, operated in the time-drive mode. The tryptophans were

excited selectively at 293 6 2 nm; the emission was collected at 340 6 4 or

340 6 8 nm, for the DTAC-induced unfolding, and at 370 6 12 nm for the

GnHCl-induced unfolding runs.

Baseline intensities were also recorded from the stopped-flow cell, in the

same conditions as for the corresponding kinetic runs. To compare a set of

traces performed in the same day, excitation and emission slits were kept

constant.

The dead-time of the stopped-flow unit (due to driving/mixing time)

is �6 ms. The fluorimeter has a maximum data acquisition rate of 1 point

per 1 ms.

Differential rate equations corresponding to chosen kinetic mechanisms

were integrated numerically with a fourth-order Runge-Kutta algorithm,

using the program BerkeleyMadonna (Berkeley Madonna, Berkeley, CA),

version 8.3.9 for Windows, developed by R. I. Macey and G. F. Oster. The

fitting of the experimental data to the integrated rate equations was also

performed by the same program, which can be downloaded from the internet

(24).

RESULTS AND DISCUSSION

Equilibrium studies

The native state of BLG in water consists mostly of anti-

parallel b-strands, as proved by its far-UV CD spectrum

(Fig. 1 A, curve 1) (see, e.g., Drake (25) for CD spectra of the

most typical protein secondary-structure elements). This

state (see Fig. 10 below) will thus be referred to by the b (or

N) state.

BLG attains quite different equilibrium conformations in

the two investigated media: In the detergent DTAC (Fig. 1 A,

curves 2�4), the protein a-helical content increases consid-

erably at the expense of its native b-sheet content, forming

the so-called a-state. In the chemical denaturant GnHCl

(curves 5�7), the amount of ‘‘ordered’’ secondary-structural

elements (b-strands and a-helices) strongly decreases,

resulting in a random coil-rich final state: the denatured or

D-state.

The b/a transition in DTAC is independent of the

protein concentration in the range 2�20 mM (Fig. 1 B):

indeed, within the experimental error, all normalized data of

[u]222 versus [DTAC] (for [DTAC] ¼ 5�40 mM) approx-

imately fall on the same sigmoidal curve. This likely means

that, for [DTAC] $ 5 mM, the oligomeric equilibrium

dimer4monomer (bdim4bmon) is strongly shifted to the

BLG monomer.

Fig. 2 illustrates tertiary-structure changes of BLG,

induced by DTAC and GnHCl, when observed through the

fluorescence of the intrinsic trytophans.

About 80% of the spectral emission intensity of the native

BLG has been attributed (26) to Trp-19 (embedded in a

hydrophobic environment, at the bottom of the calyx), and

the other 20% to the more surface-exposed Trp-61 (located at

the dimer interface). The combined spectrum (Fig. 2 A, curve
1) has a maximum emission wavelength (lF-max) at�329 nm

(see Fig. 4 A below), which reflects a medium of global low

polarity sensed by these residues (27). Its low emission

quantum yield has been attributed to the quenching of Trp-

61, either by the nearby Cys-66�Cys-160 disulfide bond

(28) and/or by the Trp-61 of the other monomer subunit (29).

Even though the maximum emission wavelength is only

slightly red-shifted in the presence of DTAC (to �339 nm;

see Fig. 4 A below), the emission intensity (IF) drastically

increases (Fig. 2 A, curves 2�5) up to the micelle region

(CMC ¼ 22�22.5 mM (18)). This significant increase in IF

can be explained by a less quenched Trp-61 in state a than in

the native protein; and it also suggests that state a is less

FIGURE 1 (A) Far-UV CD spectra of b-lactoglobulin in water (1), DTAC

aqueous solutions (2�4), and GnHCl solutions at pH � 7 (5�7). [u] is the

molar ellipticity per monomeric protein. [DTAC] ¼ 10, 18, and 40 mM for

curves 2�4, respectively; [GnHCl] ¼ 3, 4, and 5 M for curves 5�7,

respectively. (B) Effect of the protein concentration on the evolution of

[u]222 versus [DTAC], normalized at [DTAC] ¼ 40 mM (micelle region),

where the a-helical content is stabilized. [BLG] ¼ 2 ()), 5 (n), 10 (h), and

20 mM (s). The sigmoidal curve through the data is a guide to the eye.
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compact than state N, according to our near-UV CD data

(16).

This tertiary-structure transition is independent of the

protein concentration, in the range of 2�20 mM: indeed, and

except for very low DTAC contents (�5 mM), all normal-

ized IF data approximately fall on the same curve (not shown

herein). This also favors the above hypothesis that the

equilibrium bdim4bmon is strongly deviated to the bmon

state, for [DTAC] $ 5 mM.

When the denaturant GnHCl is present, IF increases, but

much less than in DTAC (Fig. 2 B), suggesting that the BLG

tryptophans (or, at least, Trp-61) are still quenched. A

marked red shift, up to lF-max � 351 nm, is observed in this

medium (see Fig. 4 A below), indicating a complete exposure

of the trytophans to water (30). So, it is likely that BLG

becomes completely unfolded at high GnHCl concentrations

(reaching the D-state).

This significant shift in lF-max clearly defines the tertiary-

structure transition of BLG induced by GnHCl, as illustrated

in Fig. 2 C. The data follow a sigmoidal curve, which was

fitted to a Boltzmann-type function, Eq. 1a, applicable to

two-state transitions (see, e.g., Fersht (31)):

Y ¼ YD
1 ðYN � YDÞ=ð1 1 exp½mðC� CmÞ=RT�Þ: (1a)

In Eq. 1a, Y is the value of the spectroscopic property; YN

and YD are the values of Y for the protein initial and final states,

N and D; C is the molar concentration of the denaturant; Cm is

its midpoint transition concentration (where 50% of the

protein molecules are in each state, N or D); and m is a

parameter related to the transition cooperativity: it is propor-

tional to the fraction of amino-acid residues exposed to the

solvent during the transition, and thus to the slope of the curve

in the transition region.

Even though a two-state transition is only a broad ap-

proximation in our case (as seen below), we used Eq. 1a to

fit our equilibrium data in GnHCl because they follow a

sigmoidal trend. The fitted values of YN (336.5 nm) and YD

(355 nm) compare very well with the experimental ones,

taken from Fig. 2 C. The value for the transition mid-point,

Cm ¼ 2.40 M, agrees with that obtained by Hamada and

Goto, 2.4 M, detected by the change in the ellipticity at 295

nm (6). For the cooperativity parameter, we obtained the

value m ¼ 16.5 kJ mol�1 M�1.

All these results (as well as near-UV CD spectra, not

shown) confirm that BLG unfolds completely in GnHCl,

attaining the unordered D-state (16,32), but only partially in

DTAC, forming the loose a-state (16). Comparing Fig. 3, A
(for DTAC) and B (for GnHCl), it is seen that the transition

in DTAC spans a concentration range of only ;50 mM

(from �0 to �50 mM), whereas the one in GnHCl spans a

much wider range, of ;1 M (from �2 to �3 M). This means

that the b/a transition in DTAC is much more cooperative

than the b/D unfolding in GnHCl.

Fig. 3 A compares tertiary- and secondary-structure

changes induced in BLG by DTAC. The noncoincidence of

their midpoint DTAC concentrations (4 and 11 mM, respec-

tively) means that the protein unfolds more easily (i.e., at

lower DTAC concentrations) than suffers the b/a transi-

tion. Therefore, an intermediate state (I1) should accumulate

FIGURE 2 (A) Fluorescence spectra of b-lactoglobulin in water (1) and in

DTAC aqueous solutions: [DTAC] ¼ 3.75, 10, 15, and 30 mM for curves

2�5, respectively. (Adapted from Viseu et al. (16)). (B) Fluorescence

spectra of b-lactoglobulin in water (1) and in GnHCl solutions, at pH � 7:

[GnHCl] ¼ 2.1, 2.6, 3.0, and 6.1 M for curves 2�5, respectively. (C)

Wavelength of maximum emission (lF-max) as a function of the GnHCl

concentration. In panel C, the data were fitted to Eq. 1a of the text.
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between states b and a. This means that the b/a transition is

not a simple two-state process as it has been treated in a first

approximation (16).

The concentration of the intermediate I1, which can accu-

mulate during the DTAC-induced unfolding, shown as a

gray curve in Fig. 3 A, was calculated from the difference

between tertiary- and secondary-structure changes, assuming

that: i), the tertiary-structure transition has reached its com-

pletion on the intermediate, where ii), no disruption of the

secondary structure has occurred yet. Therefore, it is the

maximum accumulation that can be theoretically achieved.

The actual intermediate accumulation is probably lower than

the one predicted here.

Fig. 3 B compares the tertiary- and secondary-structure

changes of BLG induced by GnHCl (i.e., for the b/D

transition). It is observed that changes in the tertiary structure

occur at lower GnHCl concentrations than those in the sec-

ondary structure, with Cm values of 2.65 and 3.0 M, re-

spectively. This latter value agrees with that obtained by

Hamada and Goto (3.0 M) using the same technique, the

change in the ellipticity at 222 nm (6). In Fig. 3 B, the data

were fitted to Eq. 1a, but taking also into account the

following linear relations (31):

Y
N ¼ a

N
1 b

N
3 C (1b)

Y
D ¼ a

D
1 b

D
3 C: (1c)

In Eqs. 1b and 1c, the parameters a and b are, respectively,

the Y axis intercepts and the slopes of the transition curves,

before (N-state) and after (D-state) the transition region.

From the fits, we obtained m values of 12.4 and 5.5 kJ mol�1

M�1, respectively, for the tertiary- and secondary-structure

transitions of BLG. This means that a higher cooperativity

was found for the former type of transition.

The noncoincidence of the midtransition points for the

GnHCl-induced secondary- and tertiary-structure changes in

BLG means that another intermediate (I2) accumulates

between the states b and D. Kinetic results described below

will shed more light on the nature of I1 and I2 states.

Kinetic studies

Unfolding kinetic studies used the fluorescence of the in-

trinsic BLG tryptophans as the detection technique. Steady-

state emission spectra of the main protein equilibrium forms at

pH� 6�7 (b-dimer, a, and D; Fig. 4 A), show that state a has

the highest fluorescence yield, whereas state D has the most

red-shifted emission. These distinct characteristics of the main

equilibrium conformations of BLG allow an easy monitoring

of its unfolding kinetics, induced by either DTAC or GnHCl.

Fig. 4 B illustrates typical unfolding kinetic traces of BLG

in both media (DTAC and GnHCl), as well as the corre-

sponding baselines for the equilibrium states involved. It is

seen that, even though much lower concentrations of the de-

tergent (rather than the denaturant) are needed for BLG

unfolding, the DTAC-induced transition generally proceeds

much faster than the GnHCl-induced one. This is not sur-

prising, given the two quite different final states. Indeed, the

b/a transition (that alters considerably the protein second-

ary structure but only induces a moderate change in its tertiary

structure—and so mainly involves local interactions) is

expected to be faster than the protein denaturation (which

produces drastic alterations in both secondary and tertiary

structures—i.e, it also involves nonlocal interactions).

The transition dimer / monomer in the native state

(bdim/bmon), induced by an aqueous HCl�KCl buffer at

pH ¼ 2.2 (at which BLG is monomeric (8)), was too fast to

be acquired by the equipment used. This means that it occurs

within the dead-time of the stopped-flow apparatus (�6 ms).

Therefore, the native monomer (bmon) is not the kinetic

FIGURE 3 (A) DTAC-induced secondary- and tertiary-structure transi-

tions of b-lactoglobulin (adapted from Viseu et al. (16)). The gray curve

shows the maximum accumulation of the intermediate I1 during the b/a

transition, calculated as described in the text. (B) GnHCl-induced secondary-

and tertiary-structure transitions of b-lactoglobulin. In both panels, the

protein a-helical content was evaluated from [u]222 (circles) and/or by the

program SELCON3 (squares), whereas tertiary-structure changes were

obtained from [u]293 (diamonds) and/or the maximum emission intensity

with excitation at 293 nm (triangles). Cm is the midpoint concentration of the

unfolding agent, DTAC or GnHCl, assuming a two-state transition. The

curves through the data in panel A are guides to the eye, whereas those in

panel B are the data fits to Eqs. 1a–1c of the text.
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intermediate detected in either the DTAC-induced or the

GnHCl-induced unfolding, but it is probably involved in a

rapid preequilibrium, in both media. In Fig. 4 A, the emission

spectra of the protein native dimer (at pH � 6, curve 1) and

monomer (at pH � 2, curve 2) can be compared, whereas

Fig. 4 B shows their baseline traces (19 and 29, respectively,

for the dimer and monomer).

DTAC-induced unfolding

Kinetic curves characterizing the b/a transition of BLG, at

the level of the tertiary structure, are illustrated in Fig. 5, at

several DTAC concentrations.

Because the surfactant is in great excess relatively to the

protein (�1000:1, in molar units), pseudo-first-order pro-

cesses are expected, i.e., the protein concentration should not

affect unfolding rates as long as the equilibrium dimer4

monomer is not involved in kinetics. This fact was confirmed

by the almost coincidence of normalized kinetic curves, for

BLG concentrations in the range 5�20 mM (results not

shown); at higher BLG concentrations, a slight deviation

(to lower rates) could indeed be due to the presence of some

protein dimer, in equilibrium with the monomer.

The fluorescence growth observed experimentally could

not be fitted to a single exponential time function, but,

instead, was fitted to a biexponential. This latter function is

adequate to model two first-order, sequential, kinetic steps

between three protein states b, I1, and a, with rate constants

k1 and k2:

b ��!k1
I1 ��!k2

a: (Mechanism A1)

Mechanism A1 implies the rise and decay of an on-

pathway intermediate (I1) during the transition. Integration

of the differential rate equations corresponding to this

mechanism (subject to the initial conditions: [b]t¼0 ¼ [b]0;

[I1]t¼0 ¼ [a]t¼0 ¼ 0) gives the following concentration-time

functions (see, e.g., Steinfeld et al. (33)):

½b�t ¼ ½b�0 3 expð�k1 3 tÞ (2a)

½I1�t ¼ ½b�0 3 fk1=ðk2 � k1Þg3 fexpð�k1 3 tÞ
� expð�k2 3 tÞg (2b)

½a�t ¼ ½b�0 3 f1� ½k2=ðk2 � k1Þ�3 expð�k1 3 tÞ
1 ½k1=ðk2 � k1Þ�3 expð�k2 3 tÞg: (2c)

The experimental observable in Fig. 5 is the total fluo-

rescence intensity F (the sum for that of the b, I1, and a

states, with relative emission yields eb; eI1
; and ea), at the

chosen emission wavelength (in this case, 340 nm):

FIGURE 4 (A) Emission spectra of the main b-lactoglobulin conforma-

tions are: (1) native dimer in water, pH � 6 (bdim); (2) native monomer in

water, pH ¼ 2.2 (bmon); (3) state-a, in DTAC micelles ([DTAC] ¼ 25 mM),

pH � 6.5; and (4) state D, in 4 M GnHCl, pH � 6.5. (B) Unfolding kinetics

of b-lactoglobulin with lexc ¼ 293 nm and lem ¼ 340 nm (curves in black)

in 25 mM DTAC (3) and in 4 M GnHCl (4). The kinetic baselines obtained

in the stopped-flow cell are shown for comparison (curves in gray): (19) in

water, pH � 6.5, for the native dimer (bdim); (29) in water, pH ¼ 2.2, for the

native monomer (bmon); (39) in 25 mM DTAC, after stabilization of state a;

and (49) in 4 M GnHCl, after stabilization of state D.

FIGURE 5 Kinetic profiles for the DTAC-induced unfolding of the native

b-lactoglobulin in water. The traces were obtained by following the Trp

fluorescence, with excitation at 293 nm and emission at 340 nm. Effect of the

DTAC concentration is: [DTAC] ¼ 2.5, 6.25, 10, 12.5, 17.5, 22.5 (at the

CMC), and 25 mM, for curves 1�7, respectively. [BLG] ¼ 10 mM in all

runs.
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F ¼ eb½b�t 1 eI1 ½I1�t 1 ea½a�t: (2d)

The initial protein concentration [b]0 is known, and so each

kinetic curve is a function of five parameters: two rate con-

stants and three relative emission yields. These parameters,

illustrated in Fig. 6, were obtained by the data fitting program,

which also integrates differential kinetic equations numeri-

cally (see the ‘‘Materials and Methods’’ section) and so the

analytical solution, Eqs. 2a–2c, was not used directly.

Mechanism A1 did not consider the reversibility of the two

processes (with rate constants k1 and k2). Therefore, the

observed rate constants (which are represented in Fig. 6 B)

should be the sum of the forward and reverse rate constants,

being close to the forward rate constants only at relatively

high DTAC concentrations. We should note as well that we

assumed that k1 is the faster, and k2 the slower, rate constants

of mechanism A1. However, because of the nonidentifiability

of the two calculated rate parameters in sequential, first-order

reaction schemes (34), k1 could correspond to the slower rate

constant and k2 to the faster one. But in this latter hypothesis

the intermediate I1 would be very labile (and the steady-state

approximation would apply to it), which is inconsistent with

our experimental data, where the accumulation of an inter-

mediate was easily detected (recall Fig. 3 A).

Fig. 6 A shows that the relative emission yields of the three

protein states involved in the transition (b, I1, and a) follow

the same order at all DTAC concentrations: eb , eI1
, ea:

This means that, as long as [DTAC] increases, a progressive

and similar effect is induced on both partially unfolded states,

I1 and a. Unexpectedly, the emission intensity of the native

state (eb) is not constant with [DTAC]. This seems inconsistent,

and probably happens because of the poor sensitivity in the

calculation of this parameter from the initial data of Fig. 5,

which are close to the dead-time of the stopped-flow apparatus.

The observed (pseudo-first-order) rate constants depend on

the DTAC concentration because the population of the final

denatured state increases with [DTAC]. However, a Chevron

plot of the two rate constants as a function of [DTAC] (not

shown herein) does not present any detectable linear region.

On the other hand, a ‘‘modified Chevron plot’’ (Ln�Ln) of

k1 and k2 as a function of [DTAC] shows two linear regions for

each rate constant (Fig. 6 B). As long as [DTAC] increases,

both the fast and slow rate constants show a similar trend: after

an initial decrease, at low [DTAC], k1 and k2 increase with

[DTAC], tend to stabilize when micelles are formed, for

[DTAC] ¼ 22.5 mM (18), and then slowly decrease again

above the CMC. The initial rate decrease (similarly to a

Chevron plot for two-state unfolding proteins) is attributed to

the competition of the reverse refolding process. The min-

imum values of both rate constants are observed for [DTAC]

� 4 mM and the maximum values appear slightly above the

CMC, for [DTAC] � 25�30 mM.

A linear Ln�Ln representation was also found by Otzen

and Oliveberg (35) for the unfolding rate of the small protein

S6 induced by cylindrical micelles of sodium dodecylsulfate

(SDS). These nonspherical micelles are formed at SDS concen-

trations about two orders of magnitude higher than its CMC.

The authors proposed that the unfolding occurs via a binding

complex between the protein and the micelles (S6#:SDS) formed

in the burst-phase of the stopped-flow experiment (�8 ms).

In our case, a linear Ln�Ln Chevron plot is observed for

DTAC concentrations mainly in the premicelle region and up

to slightly above the CMC, �4�30 mM. We propose herein

that a rapid preequilibrium between the protein and the

DTAC monomers (but not with the DTAC micelles) is

established within the dead-time of the stopped-flow appa-

ratus (�6 ms), forming a complex. This complex may be

represented as BLG#:nDTAC, in which BLG# could be the

native monomer (bmon) bound to nDTAC molecules. In this

case, the complete unfolding mechanism would be written as

(where n9 and n99 may be different from n):

According to mechanism A2, the observed rate constants

were fitted to the following linear equation, which is analo-

gous to the one proposed for the unfolding of S6 induced by

cylindrical SDS micelles (35,36):

LnðkobsÞ ¼ LnðkrefÞ1 Dn 3 LnðC=CrefÞ: (3)

In Eq. 3, kobs is the observed rate constant at a given

DTAC concentration C; kref is the rate constant at a chosen

reference concentration Cref; and Dn is the increase in the

number of protein-DTAC interactions during the unfolding

step(s). Using Cref � 10 mM for both kinetic steps, i.e., for

the two series of data in Fig. 6 B, the values obtained for Dn
(for [DTAC] ¼ 3.75�25 mM) were 2.2 and 1.7 for steps

1 and 2, respectively, of mechanism A2 (or Dn � 2 for both

steps). This means that, after formation of the initial BLG#:

nDTAC complex, two more DTAC molecules participate in

each of the subsequent unfolding steps, i.e., n9 ¼ n 1 2 and

n$ ¼ n9 1 2 ¼ n 1 4: Even though the value of n is un-

known, this result seems reasonable if we consider the suc-

cessively more loosen tertiary structures of the three protein

states, in the order b / I1 / a, which can successively

bind more DTAC molecules.

bdim 1 DTAC%bmon; : nDTAC ��!k1
I1 : n9DTAC ��!k2

a : n$DTAC: (Mechanism A2)

Unfolding Kinetics of b-Lactoglobulin 3607

Biophysical Journal 93(10) 3601–3612



On the other hand, the saturation of the rate constants above

the detergent CMC will occur if the DTAC monomers are the

entities responsible for the transitions, as proposed in

mechanism A2. Indeed, above the CMC, the concentration

of monomers is constant and thus no increase in the rate

constants is expected. The small decrease observed (espe-

cially in k2), when the concentration of micelles becomes

more significant, probably means that some protein molecules

are incorporated into the DTAC micelles, which somehow

prevent the transition induced by the DTAC monomers. To

explain this decrease, e.g., for k2, we propose a mechanism

based on the partition of the intermediate I1 between the so-

lution phase (where it can interact with the DTAC monomers)

and the micelles. (An analogous mechanism may also explain

the decrease in the rate constant k1, if we assume that the

N-state is also partitioned between the solution and the DTAC

micelles.) The equations obtained from this mechanism are

described in the Appendix (Eqs. 1–7). Support for this mech-

anism is given in Fig. 6 B, where the observed k2 values were

fitted to Eq. 7 of the Appendix: from the critical micelle con-

centration, CMC � 22.5 mM (18), and the mean aggregation

number, AN � 50 (37), a value of 0.29 6 0.04 mM was

calculated for the dissociation constant KI1
: Using a similar

procedure, a value of 7 6 6 mM was estimated for KN;
reflecting the lower affinity of the protein native state for the

DTAC micelles as compared to that of the intermediate state.

GnHCl-induced unfolding

Effect of the emission wavelength. In the case of the GnHCl-

induced unfolding of BLG, kinetic curves collected at dif-

ferent emission wavelengths presented an inversion on the

curve trend (from decay to growth) at 345�350 nm (Fig. 7).

This wavelength is not far from the iso-emissive point of the

N and D states (at �345 nm) found in steady-state spectra

(Fig. 4 A).

To verify if an on-pathway intermediate accumulates

between states N and D, a set of experimental kinetic curves

collected at different wavelengths (310�410 nm) were fitted

to biexponential time functions. It was found that all growth

and decay profiles could be described by this type of function,

meaning that the GnHCl-induced unfolding is a sequential,

two-step mechanism, B1, involving an intermediate I2:

b ��!k1
I2 ��!k2

D: (Mechanism B1)

The five parameters extracted from the fits at each wave-

length (two rate constants and three relative emission yields)

are illustrated in Fig. 8.

The relative emission intensities (Fig. 8 A) should rep-

resent the recovered emission spectra of the three confor-

mational states b, I2, and D. Curiously, all spectra cross at the

same wavelength (352 nm), which should be an isoemissive

FIGURE 6 Fitted parameters to a kinetic model of two sequential

processes for the DTAC-induced unfolding of b-lactoglobulin, as a function

of [DTAC] are: (A) relative emission intensities (the large arrow indicates

the reaction coordinate for the transition) and (B) modified ‘‘Chevron Plot’’

of the fast (k1; black symbols) and slow (k2; gray symbols) rate constants

(Ln�Ln scale). Panel B shows the different DTAC concentration regimes:

low (diamonds); intermediate (triangles, fitted to a linear equation); and high

(circles, fitted to Eq. 7 of the Appendix, which is linear in this plot). The

CMC of DTAC is indicated in both panels.

FIGURE 7 Typical kinetic profiles (decays in gray, growths in black) for

the GnHCl-induced unfolding of the native b-lactoglobulin, in water. Effect

of the fluorescence emission wavelength: lem ¼ 330; 335; 340; 345; 350;

355; 360; and 370 nm for curves 1�8, respectively. [BLG] ¼ 10 mM and

[GnHCl] ¼ 4 M.
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point for the three states. However, the wavelength found is

not exactly the same as the one obtained by steady-state

emission spectra (�345 nm; Fig. 4 A). Furthermore, the

maximum emission intensities of the protein b and D states

(Fig. 8 A) are reversed with respect to those acquired in

steady-state conditions (Fig. 4 A).

These discrepancies might be explained if the ‘‘initial’’

emission intensities obtained from kinetic data would cor-

respond to a protein precursor state (P) with stronger fluo-

rescence intensity than the native state bdim (and also

stronger than the final D state). State P, stabilized by GnHCl

as a solvent, should be formed within the stopped-flow dead-

time (�6 ms). The complete mechanism would thus be

written as:

bdim 1 GnHCl%ðPÞGnHCl ��!k1 ðI2ÞGnHCl ��!k2 ðDÞGnHCl;

(Mechanism B2)

where ðXÞGnHCl denotes a generic protein state X ‘‘solvated’’

(or stabilized) by GnHCl.

Mechanism B2 corresponds to the same kinetics as mech-

anism B1 if the equilibrium forming the precursor state P is

established within the experimental burst-phase (�6 ms).

State P, having more intense fluorescence than the native state

bdim, could either be the native monomer, bmon, the interme-

diate I1, or even an a-state, stabilized by GnHCl—possibly

different from the DTAC-stabilized analogous states.

The fact that both rate constants k1 and k2 are approxi-

mately independent of the emission wavelength, as seen by

the nearly horizontal trend-lines in Fig. 8 B, is an indication

that we are dealing with the correct mechanism. The ir-

regularities observed near the isoemissive point can be ex-

plained by the lower sensitivity in the parameter fitting, in

this wavelength range, due to a lower signal/noise ratio

(because the initial and final emission intensities do not differ

too much; Fig. 7).

Effect of the GnHCl concentration. Unfolding kinetic pro-

files of BLG induced by GnHCl as a function of the dena-

turant concentration (data not shown herein) were obtained

for [GnHCl] � 2�4 M.

GnHCl concentrations ,2.0 M do not denature the protein,

i.e., the corresponding ‘‘kinetic’’ profiles were nearly hori-

zontal baselines, and so no kinetic parameters could be

obtained. This was expected because, according to equilib-

rium results, BLG remains in the N-state in these conditions

(see Figs. 2 C or 3 B). An incipient ‘‘refolding limb’’ seems to

appear at [GnHCl]� 2 M (see Fig. 9 B below), but we have not

enough data in this range to confirm this trend.

At 2�4 M GnHCl (i.e., for the transition region and

above), all unfolding kinetic traces were best fitted to bi-

exponentials. Fig. 9 illustrates the rate constants and relative

emission yields extracted from the fits.

The relative emission intensities of the three protein states,

P, I2, and D, follow the same order at all GnHCl concen-

trations (Fig. 9 A). This means that GnHCl, as long as its

concentration increases, induces a progressive and similar

effect on both partially unfolded (I2) and denatured (D) states

(and on the respective transition states). It is also seen that, at

the observation wavelength of 370 nm, the fluorescence

yield of D is higher that that of I2, which is higher than that of

the precursor state.

Both the fast and slow rate constants show an exponential

trend with the GnHCl concentration (for [GnHCl] . 2.5 M,

when almost all of the protein molecules become denatured),

thus following linear Chevron-plot representations (Fig. 9 B).

This trend results from an inverse linear relationship between

the free energy change and the GnHCl concentration, for

each step of the mechanism.

For GnHCl concentrations in the range 2�2.5 M, the

observed rate constant k2 shows an irregular trend (Fig. 9 B);

this also happens with eD, the emission yield of the final state

(Fig. 9 A). This behavior is due to the inadequate time range

used for the fit, which was too short to obtain stable values

for these parameters. This means that the fitting was not very

sensitive to k2 and eD. A sensitivity analysis of the kinetic

profiles (33), the purpose of which is to assess the sensitivity

of the systems solutions to small changes in input parameters,

FIGURE 8 Fitted parameters to a kinetic model of two sequential pro-

cesses for the GnHCl-induced unfolding of b-lactoglobulin, as a function of

the emission wavelength: (A) relative emission intensities (the larger arrows

indicate the reaction coordinate for the transition) and (B) fast (k1; black
circles) and slow (k2; gray circles) rate constants.
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could provide a better knowledge of these uncertainties and

thus help in better designing the experimental measurements.

Proposed mechanisms

Fig. 10 illustrates the main conformational states of b-lacto-

globulin, and their mechanistic interrelation, for the DTAC-

induced unfolding (route A) and the GnHCl-induced unfolding

(route B).

Regardless of the medium, the equilibrium native-dimer

4 native-monomer (bdim4bmon, represented by blue ar-
rows in the figure) is too fast to be resolved in the experi-

ments. This means that BLG becomes monomeric within the

dead-time of the stopped-flow device, and behaves as such in

the subsequent unfolding pathways.

Route A (represented by red arrows in the figure) ends in

state a. This BLG conformation is quite different from the

native state, both in secondary (mostly a-helical) and tertiary

structure (partially unfolded). The detected intermediate in

this route, I1, is similar to the native state in secondary struc-

ture but has a looser tertiary structure, more similar to the one

of state a.

Route B (represented by green arrows in the figure) is

initiated by the formation of a precursor state P, within the

experimental burst-phase. Possible precursor states can be

the native monomer or the intermediate I1 found in route A,

but stabilized by GnHCl as a solvent. The two unfolding

routes can thus have these states in common.

Route B ends in the denatured state D, which is devoid of

ordered secondary structure and is almost totally unfolded: it

only maintains the two native disulfide bonds (38). A kinetic

intermediate was also found in route B: state I2, with a

relative emission yield intermediate between those of the

precursor and D states. Apart from its fluorescence charac-

teristics, the nature of I2 could not be determined in this

work, and so it is not pictured in Fig. 10.

CONCLUSIONS

Bovine b-lactoglobulin, a b-sheet protein when native, easily

undergoes a transition to a conformation where a-helices

prevail, the a-state. The b/a transition, induced herein by

the cationic detergent DTAC, goes along with the protein

partial unfolding, meaning that the a-state has a more flexible

tertiary structure than the native b-state.

Unfolding in DTAC, which occurs at millimolar detergent

concentrations, was compared to the almost complete unfold-

ing in a common chemical denaturant, GnHCl. The unordered

D state was obtained in the molar range of denaturant con-

centrations. The b/a transition, in DTAC, is thus much

more cooperative than the protein total unfolding (b/D) in

GnHCl.

Equilibrium results were complemented by detailed kinetic

studies, to gain information on the mechanism of these two

BLG unfolding routes, in DTAC and in GnHCl. Kinetic

profiles were obtained with the stopped-flow technique

coupled to Trp fluorescence detection.

Unfolding kinetic traces of BLG in DTAC were biexpo-

nential functions, meaning that an on-pathway intermediate

(I1) accumulates between the b- and a-states. The emission

characteristics of I1 show that this protein state has a looser

tertiary structure than the native state. The evolution of the

rate constants with the DTAC concentration follows a

‘‘modified Chevron-plot’’ (linear in a Ln�Ln scale). Based

on a similar behavior described in the literature, this trend was

explained by the establishment of a preequilibrium within the

experimental burst-phase, leading to the formation of a

binding complex, BLG#:nDTAC, between the protein and the

DTAC monomers.

Unfolding profiles were also biexponentials in GnHCl, and

so another BLG intermediate (I2) accumulates between states

b and D. The fluorescence spectra of the three main pro-

tein states, recovered from kinetic data at several emission

wavelengths, showed an isoemissive point. However, the

‘‘initial’’ state seen from kinetic profiles was not state b, but a

FIGURE 9 Fitted parameters to a kinetic model of two sequential pro-

cesses for the GnHCl-induced unfolding of b-lactoglobulin, as a function of

[GnHCl] are: (A) relative emission intensities (the arrow indicates the

reaction coordinate for the transition) and (B) Chevron plot of the fast

(k1; black circles) and slow (k2, gray circles) rate constants.
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precursor state P, stabilized by GnHCl and formed within the

experimental burst-phase. A Chevron plot of the rate con-

stants shows an inverse linear relationship between the free

energy change and the GnHCl concentration, meaning that

the denaturant acts as a solvent in BLG unfolding.

APPENDIX

If I1 interacts with the DTAC micelles according to a very fast, reversible,

equilibrium, and this interaction prevents its transition to the a-state, the

observed rate constant, k2obs
; will be lower than k2, and given by:

k2obs
¼ k2 3 f

I
sol
1
; (1)

where fIsol
1
; the fraction of I1 that interacts with the DTAC monomers in

solution, is:

f
I
sol
1
¼ ½I1�sol

=½I1�total
: (2)

The equilibrium constant of I1 between micelles and solution (dissociation

constant, KI1
) is given by:

KI1 ¼ ½I1�sol½Mic�=½I1�mic
; (3)

where ½Mic� and ½I1�mic
are, respectively, the concentration of micelles and

the concentration I1 incorporated in micelles.

The concentration of micelles is calculated from the total surfactant

concentration, ½DTAC�tot; the critical micelle concentration, CMC � 22.5

mM (18), and the mean aggregation number, AN � 50 (37), by:

½Mic� ¼ f½DTAC�tot � CMCg=AN: (4)

Combining Eqs. 2 and 3, we obtain:

f
I
sol
1
¼ 1 1 ½Mic�=KI1

� ��1
: (5)

Below the CMC, ln k2 depends linearly on ln ½DTAC�tot
(see Fig. 6 B), so:

ln k2 ¼ ln kwater

2 1 m 3 ln½DTAC�tot
: (6)

Above the CMC, we can use for k2 the value obtained at the CMC attenuated

by the fraction of I1 that interacts with the DTAC monomers in solution (Eq.

1). Applying logarithms to Eq. 1 and using Eq. 5 for fIsol
1
; the following

relationship holds:

ln k2obs
¼ ln

e
ðln k

water
2 1 m 3 ln CMCÞ

1 1 ½Mic�=KI1

" #
: (7)

This equation was used to fit the decrease in ln k2 above the CMC, by

varying KI1
: The parameters ln kwater

2 and m are not linked to KI1
because they

relate to different ranges of DTAC concentrations; so, they were determined

independently by linear regression of the first linear part of Fig. 6 B

(corresponding to the values of k2 for ½DTAC�tot
between 5 and 25 mM), and

then were used to determine KI1
in Eq. 7.

An analogous mechanism may also explain the decrease in the rate

constant k1obs
; if we assume that the N-state is also partitioned between the

solution and the DTAC micelles, with a dissociation constant KN:
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